Goto

Collaborating Authors

 Distributed Architectures


Distributed Learning and Inference Systems: A Networking Perspective

arXiv.org Artificial Intelligence

Machine learning models have achieved, and in some cases surpassed, human-level performance in various tasks, mainly through centralized training of static models and the use of large models stored in centralized clouds for inference. However, this centralized approach has several drawbacks, including privacy concerns, high storage demands, a single point of failure, and significant computing requirements. These challenges have driven interest in developing alternative decentralized and distributed methods for AI training and inference. Distribution introduces additional complexity, as it requires managing multiple moving parts. To address these complexities and fill a gap in the development of distributed AI systems, this work proposes a novel framework, Data and Dynamics-Aware Inference and Training Networks (DA-ITN). The different components of DA-ITN and their functions are explored, and the associated challenges and research areas are highlighted.


Zero-Forget Preservation of Semantic Communication Alignment in Distributed AI Networks

arXiv.org Artificial Intelligence

Future communication networks are expected to connect massive distributed artificial intelligence (AI). Exploiting aligned priori knowledge of AI pairs, it is promising to convert high-dimensional data transmission into highly-compressed semantic communications (SC). However, to accommodate the local data distribution and user preferences, AIs generally adapt to different domains, which fundamentally distorts the SC alignment. In this paper, we propose a zero-forget domain adaptation (ZFDA) framework to preserve SC alignment. To prevent the DA from changing substantial neural parameters of AI, we design sparse additive modifications (SAM) to the parameters, which can be efficiently stored and switched-off to restore the SC alignment. To optimize the SAM, we decouple it into tractable continuous variables and a binary mask, and then handle the binary mask by a score-based optimization. Experimental evaluations on a SC system for image transmissions validate that the proposed framework perfectly preserves the SC alignment with almost no loss of DA performance, even improved in some cases, at a cost of less than 1% of additional memory.


Cooperation and Personalization on a Seesaw: Choice-based FL for Safe Cooperation in Wireless Networks

arXiv.org Artificial Intelligence

Federated learning (FL) is an innovative distributed artificial intelligence (AI) technique. It has been used for interdisciplinary studies in different fields such as healthcare, marketing and finance. However the application of FL in wireless networks is still in its infancy. In this work, we first overview benefits and concerns when applying FL to wireless networks. Next, we provide a new perspective on existing personalized FL frameworks by analyzing the relationship between cooperation and personalization in these frameworks. Additionally, we discuss the possibility of tuning the cooperation level with a choice-based approach. Our choice-based FL approach is a flexible and safe FL framework that allows participants to lower the level of cooperation when they feel unsafe or unable to benefit from the cooperation. In this way, the choice-based FL framework aims to address the safety and fairness concerns in FL and protect participants from malicious attacks.


Distributed AI Platform for the 6G RAN

arXiv.org Artificial Intelligence

Cellular Radio Access Networks (RANs) are rapidly evolving towards 6G, driven by the need to reduce costs and introduce new revenue streams for operators and enterprises. In this context, AI emerges as a key enabler in solving complex RAN problems spanning both the management and application domains. Unfortunately, and despite the undeniable promise of AI, several practical challenges still remain, hindering the widespread adoption of AI applications in the RAN space. This article attempts to shed light to these challenges and argues that existing approaches in addressing them are inadequate for realizing the vision of a truly AI-native 6G network. Motivated by this lack of solutions, it proposes a generic distributed AI platform architecture, tailored to the needs of an AI-native RAN and discusses its alignment with ongoing standardization efforts.


Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems

arXiv.org Artificial Intelligence

Amidst the robust impetus from artificial intelligence (AI) and big data, edge intelligence (EI) has emerged as a nascent computing paradigm, synthesizing AI with edge computing (EC) to become an exemplary solution for unleashing the full potential of AI services. Nonetheless, challenges in communication costs, resource allocation, privacy, and security continue to constrain its proficiency in supporting services with diverse requirements. In response to these issues, this paper introduces socialized learning (SL) as a promising solution, further propelling the advancement of EI. SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents within the EI system. SL not only enhances the system's adaptability but also optimizes communication, and networking processes, essential for distributed intelligence across diverse devices and platforms. Therefore, a combination of SL and EI may greatly facilitate the development of collaborative intelligence in the future network. This paper presents the findings of a literature review on the integration of EI and SL, summarizing the latest achievements in existing research on EI and SL. Subsequently, we delve comprehensively into the limitations of EI and how it could benefit from SL. Special emphasis is placed on the communication challenges and networking strategies and other aspects within these systems, underlining the role of optimized network solutions in improving system efficacy. Based on these discussions, we elaborate in detail on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses. Finally, we identify some possible future applications of combining SL and EI, discuss open problems and suggest some future research.


Intelligence and Motion Models of Continuum Robots: an Overview

arXiv.org Artificial Intelligence

Many technical solutions are bio-inspired. Octopus-inspired robotic arms belong to continuum robots which are used in minimally invasive surgery or for technical system restoration in areas difficult-toaccess. Continuum robot missions are bounded with their motions, whereby the motion of the robots is controlled by humans via wireless communication. In case of a lost connection, robot autonomy is required. Distributed control and distributed decision-making mechanisms based on artificial intelligence approaches can be a promising solution to achieve autonomy of technical systems and to increase their resilience. However these methods are not well investigated yet. Octopuses are the living example of natural distributed intelligence but their learning and decision-making mechanisms are also not fully investigated and understood yet. Our major interest is investigating mechanisms of Distributed Artificial Intelligence as a basis for improving resilience of complex systems. We decided to use a physical continuum robot prototype that is able to perform some basic movements for our research. The idea is to research how a technical system can be empowered to combine movements into sequences of motions by itself. For the experimental investigations a suitable physical prototype has to be selected, its motion control has to be implemented and automated. In this paper, we give an overview combining different fields of research, such as Distributed Artificial Intelligence and continuum robots based on 98 publications. We provide a detailed description of the basic motion control models of continuum robots based on the literature reviewed, discuss different aspects of autonomy and give an overview of physical prototypes of continuum robots.


Distributed Artificial Intelligence as a Means to Achieve Self-X-Functions for Increasing Resilience: the First Steps

arXiv.org Artificial Intelligence

Using sensors as a means to achieve self-awareness and artificial intelligence for decision-making, may be a way to make complex systems self-adaptive, autonomous and resilient. Investigating the combination of distributed artificial intelligence methods and bio-inspired robotics can provide results that will be helpful for implementing autonomy of such robots and other complex systems. In this paper, we describe Distributed Artificial Intelligence application area, the most common examples of continuum robots and provide a description of our first steps towards implementing distributed control.


Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance

arXiv.org Artificial Intelligence

Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance.


Distributed AI in Zero-touch Provisioning for Edge Networks: Challenges and Research Directions

arXiv.org Artificial Intelligence

Zero-touch network is anticipated to inaugurate the generation of intelligent and highly flexible resource provisioning strategies where multiple service providers collaboratively offer computation and storage resources. This transformation presents substantial challenges to network administration and service providers regarding sustainability and scalability. This article combines Distributed Artificial Intelligence (DAI) with Zero-touch Provisioning (ZTP) for edge networks. This combination helps to manage network devices seamlessly and intelligently by minimizing human intervention. In addition, several advantages are also highlighted that come with incorporating Distributed AI into ZTP in the context of edge networks. Further, we draw potential research directions to foster novel studies in this field and overcome the current limitations.


Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

arXiv.org Artificial Intelligence

Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on edge AI for resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.